
Robert May

While mathematics for its own sake is certainly exciting and beautiful, we should not forget that
it is important in a wide range of fields. For example, you might be surprised by the variety of
mathematical models and problems arising from the study of biology and ecology. Lord Robert
May is a scientist who made important contributions to this field.

Robert May was born 1938 in Sydney. He studied mathematics and theoretical physics at Sydney
University and his PhD thesis focused on superconductivity. In 1959 he left Australia for a post-
doctoral position in the Division of Engineering and Applied Physics at Harvard University, before
returning to the University of Sydney in 1962. He soon became interested in ecology, specifically
animal population dynamics, and took up a Professorship in the Biology Department at Princeton
in 1973. In 1988, May moved to Britain and became a Professor at Oxford University and a fellow
of Merton College.

May studied population dynamics, the relationship between complexity and stability in natural
communities, infectious diseases, and biodiversity. Especially through his application of mathemat-
ical techniques and background as theoretical physicist, he could contribute to major developments
in population biology. He also was involved in the development of theoretical ecology.

Over the years May received numerous awards for his work. In 1996 he was knighted for services
to Science. May was also Chief Scientific Adviser to the UK government from 1995 to 2000 and
president of the Royal Society from 2000 to 2005.

Mathematics and Ecology

At this point you might wonder exactly which kind of mathematics was part of Robert May’s work.
I am sure you know that many processes in nature can be described by mathematical models. In
ecology, a simple example is the study of seasonally breeding populations, whose generations do
not overlap.

A relationship between Xt, the size of the generation t, and Xt+1, the size of generation t + 1,
may be expressed as Xt+1 = F (Xt), where F (X) is some function. Quite often a smooth function
is chosen. This is then called a first order difference equation. Studies of the dynamical prop-
erties of these models usually involve the observation of stability of equilibrium solutions with
respect to small disturbances. May published multiple texts in this field, in particular the article
”Simple mathematical models with very complicated dynamics” [1] gives a nice summary of results.

One such function, studied in detail and popularized by May, is the so called Logistic map

Xt+1 = rXt(1−Xt),

where r is some parameter with 0 < r ≤ 4, and Xt ∈ [0, 1]. Then F (X) = rX(1 −X) only takes
values inside [0, 1]. Now F is an increasing function in (0, 0.5) and a decreasing function in (0.5, 1).
So for Xt ∈ (0, 0.5) a larger value of Xt corresponds to a larger size of the next generation, say
due to reproduction. Note that the value of Xt+1 is proportional to Xt. Further, if Xt ∈ (0.5, 1),
then Xt increases while Xt+1 decreases, say due to starvation.

As the parameter r increases, the dynamic properties of F change drastically. It is a good example
to show how complex behaviour arises even from very simple models. Here I want to present some
interesting properties of the logistic map.
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Fixed Points

An equilibrium value X∗ of F , a so called fixed point, satisfies F (X∗) = X∗. Then each generation
has the same size. In the case of the logistic map, there is a fixed point at 0 and the fixed point in
(0, 1) is given by X∗ = (r − 1)/r, provided that r > 1.

Now we might be interested in the behaviour of the model if the starting population has a size
close to (but not equal) to this fixed point, that is, we consider small disturbances about X∗. If
|F ′(X∗)| < 1, where F ′ is the derivative of F , we have a stable fixed point and for small distur-
bances about X∗ the value of Xt will tend to X∗ as t → ∞. (This can be shown easily using
techniques covered in first year Analysis at university). On the other hand, if |F ′(X∗)| > 1 no
such behaviour is guaranteed and the fixed point is unstable.

Now note that F ′(X∗) = r(1 − 2X∗) = 2 − r since X∗ = (r − 1)/r. So we have a stable fixed
point X∗ if and only if 1 < r < 3. Further consider the fixed point 0 and suppose r < 1. Then
Xt+1 = rXt(1−Xt) < rXt = r2Xt−1(1−Xt−1) < r2Xt−1 < · · · < rt+1X0 and Xt → 0 as t→∞
for all X0. Hence 0 is a stable fixed point for r < 1.

Cycles

We already noted above that for r > 3 the fixed point X∗ is unstable. We can observe very inter-
esting dynamical properties as r increases further.

Define F (k)(X) = F (F (. . . (F (X)) . . . )) to be the function obtained by applying F k-times to
X. X∗k gives a cycle of length or period k if F (k)(X∗k) = X∗k , and further F (j)(X∗k) 6= X∗k for
j ∈ {1, . . . , k− 1}. We can find such cycles by looking for fixed points of F (k)(X∗k). If we are given
some cycle of period k, X∗k , then we can also determine its stability by considering the derivative
of F (k). As before, we have stability for an absolute value less than 1 at X∗k . So, as r increases,
any cycle that was originally stable will become unstable.

The logistic map and many other similar maps have a very interesting property: Once a cycle
of period 2k becomes unstable, two new stable cycles of period 2k+1 will appear. As r increases
further, these cycles become unstable, and four stable cycles of period 2k+2 appear, and so on.
Such a sequence of doublings is also known as period doubling cascade. In a bifurcation diagram,
shown on the last page, we can easily observe this phenomenon. The diagram shows the stable
cycles of the logistic map for given values of r. However, it should be noted that it also includes
cycles of lengths which are not powers of 2.

Chaos

So far, we have only discussed cycles of period 2k, but there may also be cycles with an odd period.
In particular, the first 3-cycle of the logistic map appears when r ≈ 3.8284.

Tien-Yien Li and James Yorke showed a very surprising result: Say f is a continuous function
mapping from an interval [a, b] back to [a, b]. If f has a 3-cycle it also has a cycle of period n for
any positive integer n, and further, there are initial points for which we do not even have asymp-
totically periodic behaviour. For such initial points the behaviour seems to be entirely chaotic.
One example of such a function is our logistic map F .

For the logistic map May further noted that there will always be an uncountable number of cycles
of integral period and an uncountable number of aperiodic solutions for r greater or equal to 3.8284,
the value at which the first 3-cycle occurs. Interestingly, given a specific r, there will also always
be a unique stable cycle attracting almost all initial points. You might ask what this means in
more precise terms. Say the initial point of this unique cycle is Y0 and Yt = F (t)(Y0) is the size of
generation t. Yt+k = Yt, where k is the period of the cycle. Then for almost any initial point X0,
Xt will be arbitrarily close to Yt for sufficiently large t, though there are also uncountably many
points for which this is not true.
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We see that even simple functions like F (X) = rX(1−X) have interesting properties. May sum-
marized it like this in his article ”Simple mathematical models with very complicated dynamics”:

” . . . the very simplest nonlinear difference equations can possess an extraordinarily rich spectrum
of dynamical behaviour, from stable points, through cascades of stable cycles, to a regime in which
the behaviour (although fully deterministic) is in many respects ”chaotic”, or indistinguishable from
the sample function of a random process.”

Julia Stadlmann
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