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Abstract 
We analyze several methods of implementing computational frameworks for laser beams propagating 
through plasma channels. The algorithms discussed are the modal reconstruction, the beam 
propagation method (BPM), the Crank-Nicolson algorithm, and a method based on the Uniaxial Pulse 
Propagation Equation (UPPE). We will split them in two categories, based on the underlying technique 
of each: Fourier methods (UPPE, BPM and modal reconstruction) and finite difference methods 
(Crank-Nicolson algorithm). We compare the physical reliability, complexity, and limitations of Fourier 
methods and finite difference methods. Furthermore, we showcase how the finite difference 
algorithm works on some well-known physical situations. 
 

Introduction 
Computer simulations are a crucial part of laser physics, helping researchers find setups that are worth 
investigating experimentally. Furthermore, they can substitute experiments in some situations. 
Therefore, there are several algorithms that can be used to propagate a beam through a channel, at 
least 4 different methods described in [3] and another 2 described in [1]. One reason for the existence 
of multiple methods is that there is no method that exactly describes the propagation within a 
reasonable complexity. Although the methods are applicable to any form of signals, we will only 
demonstrate how they work on Gaussian signals. 
Each method corresponds to a set of approximations applied to the Maxwell equations, therefore, 
based on the situation, some approximations might be more suitable than others. We distinguish two 
classes of methods: those which solve the propagation in the frequency domain, the Fourier methods, 
and those which solve it in the real space using the infinitesimal changes in the electric field, the finite 
difference methods.  We make this separation although some of the Fourier methods make use of 
finite difference methods in the process.  
Physical accuracy is the primary criterion by which we are going to judge the methods. In addition, we 
want to be able to propagate the pulse through a physically relevant distance in a reasonable time. 
Physically relevant distances for a laser pulse are usually expressed as multiples of the Rayleigh range 

(𝑧𝑅 =
π𝑤0

2

λ
, where 𝑤0 is the width of the beam and λ is the wavelength of the beam) therefore, from 

now on, we will denote the complexity of our algorithms with 𝑂(𝑓(𝑛)), where n is the number of 

Rayleigh ranges over which we propagate and 𝑓(𝑛) is the functional on which it depends. Besides the 
complexity, the corresponding constant in each method will also be reviewed, as, in some cases, it 
might be considerably large. We will analyze the prerequisites for each of the algorithms, what 
information about the channel is needed, and how feasible it is to obtain this information. Lastly, we 
analyze their limitations, and suggest in which regimes or circumstances each method is 
recommended. All the limitations will be set empirically, based on the point where we can see a 
deviation from the expected shape or dependence of the result. 
 

Fourier Methods 
Laser pulses comprise a range, or a discrete combination, of frequencies. Also, recurring equations, 
such as the Helmholtz equation and the paraxial wave equation ([1.25], [1.41] from [4]) are easier to 
solve in the frequency domain. In general, Fourier methods allow for propagations with larger steps 
than the finite difference methods. Consequently, Fourier methods are popular in solving propagation 
equations. One common issue with this class of methods is that, given that our grid is finite, the Fourier 
transform brings unwanted, unphysical reflections at the boundaries. In what follows, we will analyze 



three methods based on Fourier transforms. 

Beam Propagation Method 
This method is described in section 2.4 of [1]. The starting code on which the simulation is based is 
[5]. The advantages of this method are the low number of known parameters needed (the wavelength 
of the laser and the plasma profile), the low complexity and the accurate depiction of non-leaky 
channels. The disadvantages of this method are the aforementioned reflections and the 
representation of leaky channels.  
In the transverse direction, we need a resolution comparable to the wavelength of our pulse (around 
1000 nm), and we also need a region of interest larger than the width of the beam (the radial distance 
over which the intensity of the beam decreases by a factor of e) at any point. The graphs in Figure 1 
were obtained with a 512x512 grid, however, we can obtain sensible results even with a 200x200 grid. 
The advantage of this method is that the step size can be as large as a third of a Rayleigh range at a 
time. At each step, we go through the whole grid a couple of times. Considering these aspects, the 
complexity of this algorithm in a non-leaky regime is 𝑂(𝑛) with a constant of 200 𝑥 200 𝑥 50 =
 2𝑥106. 
 
As we notice in Figure 1 (a) and (b), despite a few dim reflections, we have a faithful representation 
of the HOFI channel. In Figure 1 (d) we observe a free space propagation. While the defocusing is 
well represented, lost energy reappears due to the Fourier reflections, which results in the 
unphysical situation represented in Figure 1 (c). A solution to this issue would be enlarging the grid 
in both directions proportionally to the increase in the propagation distance. This would result in a 

complexity 𝑂(𝑛3) if the dispersion is linear in z, or 𝑂(𝑛5) if the dispersion is parabolic. 
 
 

(a)  (b)  

(c)  (d)  
Figure 1: Propagation of a Gaussian beam of wavelength λ0 = 800nm, initial spot size 𝑤0 = 100μ𝑚 
um over a distance of 16 𝑧𝑅with (a,b) and without (c,d) a HOFI plasma channel of matched spot size 
𝑤0 = 𝑤𝑚, as calculated by a BPM code. (a, c): the transverse intensity profiles of the beam in the exit 



plane of the channel. (b, d) the longitudinal variation of the beam intensity in the plane y = 0. For these 
simulations a 512 x 512 transverse grid was employed, and 250 longitudinal steps were used. 
 
 

Modal Reconstruction 
This method is based on equation [76] from [3], it aims to compute the field at each step through 
direct integration of the contributions of each mode of the channel. In this approach, we assume the 
current J to be zero, and we assume that the polarization oscillates harmonically, therefore we 
substitute the time derivative with the frequency ω in equation [76] from [3]. For the modes, the 
results from equation [4.7] of [2] were considered.  
We abandoned after obtaining drastically unphysical results with these approximations.  

UPPE 
This approach is based on the Uniaxial Pulse Propagation equation (equation [93] of [3]): 

∂𝐸𝑘𝑥,𝑘𝑦
(ω, 𝑧)

∂z
= i𝐾𝑧𝐸𝑘𝑥,𝑘𝑦

+ i
ω2𝑃(ω, 𝑧)

2ϵ0𝑐2𝐾𝑧(𝑘𝑥 , 𝑘𝑦 , ω)
         (1) 

In order to solve this, we tried using finite difference methods, incrementing the field on the right-
hand side times a small 𝑑𝑧, which has to obey 𝐾𝑧𝑑𝑧 ≪ 1 to retain the numerical stability of the 
solution. However, this significantly reduces the distance over which we can propagate the signal. 
Comparing this approach with the beam propagation method, the transverse constant is the same 
because we need to compute a Fourier transform at each step, however, the longitudinal constant 
would increase by a factor of 103. Given that this approach also retains the reflection issues due to 
the use of Fast Fourier Transforms, while being a thousand times slower, it was concluded that, for all 
practical purposes, this approach was worse than the beam propagation method. Therefore, this 
method was abandoned. 
 

Finite Difference methods 
The pure finite difference methods have the advantage of being free from the unphysical reflections 
caused by Fourier transforms. However, depending on the method used, the stability of the solution 
can require restrictive conditions on the step size used for the iteration, and, consequently, can cause 
an increase in the execution times. There are some methods, called implicit methods, that overcome 
this disadvantage, like the Crank-Nicolson Algorithm, which is an unconditionally stable method of 
solving diffusion-like equations (proof at [7]), which allows for larger steps in the propagation 
direction. 
 

Extended Crank-Nicolson Algorithm 
The algorithm that we used is based on the pages 38-46 from [3]. We want to solve paraxial wave  
equations of the type: 

∂ℰ

∂z
=

𝑖

2𝑘0
Δ⊥ℰ + 𝒩(ℰ)          (2) 

where 𝒩(ℰ) represents the medium effects that are to be considered. The code is based on the 
pseudocode in Table 5, page 45 from [3]. The electric field is represented on a two-dimensional matrix, 
with longitudinal and radial components. From the Crank-Nicolson recursion equations, we can 
construct the matrices L_ and L+ (equations [138],[139] from [3]). The matrices can be adjusted to 
account for boundary conditions, or change the type of geometry used. Most laser experiments are 
designed with a cylindrical symmetry, which is why using a cylindrical two-dimensional grid is 
reasonable for most practical situations. By neglecting the polar angle, we reduce the computational 
time by a considerable factor. Furthermore, the matrices L_ and L+ are constructed to have a cylindrical 
infinitesimal element, which retains the 3D geometry, despite only having two coordinates.  
 
This algorithm is not affected by the grid reflections specific to Fast Fourier transform algorithms, 



however, it is affected by boundary reflections. This effect can be diminished by imposing that the last 
line of L+ is only composed of zeros. However, by doing this, we do not cancel this effect entirely. In 
order to do that, we would need to know more about the signal and the channel to be able to construct 
a perfectly matched layer. Furthermore, even this approach is open to failure, as it is discussed in [6]. 
 
If Nr is the dimension of the transverse array, then the dimensions of L_ and L+ are NrxNr. Therefore, 
the complexity of this approach is similar to the one of the Beam Propagation Method, both in the 
longitudinal and in the transverse direction. They are also the same in the leaky (𝑂(𝑛3)) and non-leaky 
(𝑂(𝑛)) regime, as leaky signals will also require a greater Nr. However, as we will see, due to the 
unconditional stability of the algorithm, we can obtain much smaller proportionality constants.  
 
The algorithm works for any smooth function 𝒩(ℰ) which makes the method robust for almost all 
physical applications. In what follows, we will analyze the output of the code in some known 
situations, and we will compare it to the known results.  
Free space propagation 
In this case we took 𝒩(ℰ) = 0 in equation (2). As we can see from Figure 2 (c), we get the expected 
picture of a diffracting beam. This is best seen when looking at Figure 2 (a), where compare the 
width of the beam, which is defined by the distance from the center over which the intensity drops 

by a factor of e, with the analytic expression 𝑤(𝑧) = 𝑤0√1 + (
𝑧−𝑧0

𝑧𝑟
)

2

. Furthermore, as we can see 

in Figure 2 (b), the intensity is monotonous, without any unphysical reflections.  

a b c  

Figure 2: Propagation of a Gaussian beam of wavelength λ0 = 800nm, intensity I = 1020 𝑊

𝑚2  initial 

spot size 𝑤0 = 100𝜇𝑚 um over 5 𝑧𝑅 in free space, with the transverse region of interest for the graphs 
20 𝑤𝑚, as calculated by a Crank Nicolson code. (a) comparison between the analytic width of the 
beam and the computational width (b) the transverse intensity profiles of the beam in the exit plane 
of the channel (c) portrait of the intensity throughout the propagation. For these simulations 50 
transverse steps were made, and 20000 longitudinal steps were used. 
 
Parabolic and HOFI channel 
For this part, we used the paraxial wave equation for a non-uniform medium, which is derived in [1]:     

∂ℰ

∂z
=

𝑖

2𝑘0
Δ⊥ℰ +

𝑖𝑘0

2
(η2 − 1)ℰ  (3) 

where η is the local index of refraction. For plasma, that is given by η = √1 −
𝑒2𝑛

ϵ0𝑚𝑒ω2   (4). By 

substituting this in the previous equation, we get a formula similar to (2) with 𝒩(ℰ) = −
𝑖𝑛𝑒2

2ϵ0𝑚𝑒𝑐ω
ℰ. 

The shape of the beam will be determined by the electron concentration. We know that for a parabolic 
channel the beam should remain focused (chapter 4 from [2]). For a concentration distribution     

n(𝑟) = (𝑛0 +
r2

𝑤1
5)  with 𝑛0 = 1023 , 𝑤1 = 40μ𝑚we obtain the profile in Figure 3 (a), which is what the 

theory predicts.  



(a) (b)  

Figure 3: Propagation of a Gaussian beam of wavelength λ0 = 800nm, intensity I = 1020 𝑊

𝑚2  initial 

spot size 𝑤0 = 100𝜇𝑚 um over 15 𝑧𝑅  in a channel of matched spot size 𝑤0 = 𝑤𝑚, with the transverse 
region of interest for the graphs 10 𝑤𝑚, as calculated by a Crank Nicolson code (a) in an infinite 

parabolic channel with n(𝑟) = (1023 + 2.189 ∗ 1015(𝑟(𝑛𝑚))
2

) 𝑚−3 (b) in a HOFI like channel with 

𝑛(𝑟) = (1023 + 2.189 ∗ 1015(𝑟(𝑛𝑚))
2

) 𝑚−3, 𝑟 ≤ 150𝜇𝑚, 𝑛(𝑟) = 0 otherwise. For these 

simulations 50 transverse steps were made, and 10000 longitudinal steps were used. 
 
For a HOFI like channel, we assumed the same shape with a linear drop after the cutoff radius                      
r = 50000 nm. As we would expect, the HOFI channel leaks some of the energy, however, even after 
15 Rayleigh ranges, most of the energy remains inside the channel. 
An extension of these simulations would be taking into consideration the non-linear effects of plasma, 
such as the Kerr effect described in section 2.4 of [3]. In this case, the medium contribution would be 

𝒩(ℰ) = −
𝑖𝑛𝑒2

2ϵ0𝑚𝑒𝑐ω
ℰ  +

𝑖ω0𝑛2𝑛0ϵ0|ℰ|2

2
ℰ, with n2 = 2x10-19 m V-2. As we can, while the 3rd order effects 

are somewhat neglectable, they tend to help focus the beam through the propagation.  

(a) (b)  
Figure 4: Propagation similar with the one in Figure 3, but taking into consideration 3rd order effects 
(a) in an infinite parabolic channel (b) in a HOFI like channel. 
 
Beams with different wavelengths interacting 
The code can be used for more than one frequency. In Figure 5 we have a demonstration of how the 
code works with two different wavelengths in parabolic and HOFI like channels. In both figures, we 
observe how an interference pattern is formed due to the constructive and destructive interferences 
of the beams.  



(a) (b)  
Figure 5: Propagation of two Gaussian beams of wavelengths (a) λ0 = 800nm and λ1 = 400nm (b) 

λ0 = 800nm and λ1 = 500nm, intensities  I = 1020 𝑊

𝑚2  initial spot sizes 𝑤0 = 100𝜇𝑚 um over 15 𝑧𝑅  

in a channel of matched spot size 𝑤0 = 𝑤𝑚, with the transverse region of interest for the graphs 
10 𝑤𝑚, as calculated by a Crank Nicolson code(a) in an infinite parabolic channel with n(𝑟) =

(1023 + 2.189 ∗ 1015(𝑟(𝑛𝑚))
2

) 𝑚−3 (b) in a HOFI like channel with 𝑛(𝑟) = (1023 + 2.189 ∗

1015(𝑟(𝑛𝑚))
2

) 𝑚−3, 𝑟 ≤ 150𝜇𝑚, 𝑛(𝑟) = 0 otherwise. For these simulations 50 transverse steps 

were made, and 10000 longitudinal steps were used. 
 
Unmatched spot-size 
Another effect that we can test is what happens if the beam width is not similar to the channel width 
when propagating through a parabolic channel. As we can see, the width of the beam oscillates during 
the propagation, this dependence is described analytically by formula [96] from [8]:                                                

𝑟𝑠 =
𝑟𝑖

20.5 √1 +
𝑛𝑐𝑟0

4

𝑛𝑟𝑖
4 + (1 −

𝑛𝑐𝑟0
4

𝑛𝑟𝑖
4 ) 𝑐𝑜𝑠 (

2𝑧

𝑧𝑅
√

𝑛

𝑛𝑐
) , where nc is the critical density of plasma and zR is the 

Rayleigh range. We can see in Figure 6(c) that the simulation almost perfectly matches the pattern for 
the fifteen Rayleigh ranges, except for some sharp nonphysical peaks in the last 3 Rayleigh ranges. In 
Figure 6 (d), we notice that our computation slightly fails to model a wider beam, by obtaining a slightly 
different oscillation frequency. This might be attributed to the region of interest that is too small.  
 

(a) (b)  



(c) (d)  
Figure 6: Propagation over 25 Rayleigh ranges in a parabolic channel with 50 longitudinal steps and 
10000 transverse. Comparison of unmatched beam propagation calculated by the Crank-Nicolson 
code with that predicted by analytical theory. (a, b) the longitudinal variation of the transverse 

intensity profile I(r) when: (a) 𝑤0 =
𝑤𝑚

2
; (b) 𝑤0 = 1.5𝑤𝑚. (c, d) Comparison of the longitudinal 

variation of the beam spot size for: (c) 𝑤0 =
𝑤𝑚

2
; (d) 𝑤0 = 1.5𝑤𝑚. 

 
Relativistic self-focusing  
The self-focusing of laser beams can occur through thermal, relativistic and ponderomotive effects. In 
this section, we will analyze relativistic self-focusing caused by the mass increase of electrons 
travelling at speeds approaching the speed of light, which modifies the plasma refractive index of a 
uniform plasma. Formulas [84-88] from [8] describe this phenomenon. For our laser of wavelength 
800nm, the critical power, according to formula [88] from [8] would be Pc = 7.8 GW. We setup a 
channel with uniform density n = 1023 m-3. We change the dependence in formula (2) to accommodate 
the result in [86]. We are interested in the dependence of the propagation picture with respect to the 
beam power. For beam powers lower than Pc, we observe that the beam diffracts, which is expected 
in the non-relativistic regime. However, for powers larger than, the beam starts focusing. As we 
observe in Figure 7, the beam starts focusing when the power exceeds the critical power. We also 
notice that is becomes more focused when we increase the power. The profile resembles the one of 
a parabolic channel, which is expected given that the refractive index profile of accelerated electrons 
converges to a square dependence. 
 

(a) (b)  
Figure 7: Propagation of a Gaussian beam of wavelength λ0 = 800nm, power (a) P = 1.05 Pc(b) P = 1.6 
Pc, initial spot size 𝑤0 = 100𝜇𝑚 um over 15 𝑧𝑅  in a medium with uniform density n = 1023 m-3, with 
the transverse region of interest for the graphs 10 𝑤𝑚, as calculated by a Crank Nicolson code. For 
these simulations 50 transverse steps were made, and 10000 longitudinal steps were used. 
 

 



Conclusion 
Throughout the situations tested, we noticed that we get physically consistent results when we have 
3 or more transverse steps per width of the channel and 200 or more longitudinal steps per Rayleigh 
range. Taking this into account, the computational constant to propagate one Rayleigh range with a 
radius of interest of 10 channel widths is of the order of 105 which is an order of magnitude lower than 
the computational constant of the Beam Propagation method, while having the same complexity. 
Furthermore, the Crank-Nicolson is not subjected to the Fourier-like reflections. 
In conclusion, the Crank-Nicolson algorithm is an efficient, robust simulations framework which 
accurately describes the physical scenario for cylindrically symmetric setups. One improvement that 
can be added from this point is adding a time dimension, in order to also represent propagations of 
pulses, rather than just continuous beams.  
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