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The rising sea
Alexander Grothendieck famously described his approach to mathematical problem-
solving with the following metaphor:

A different image came to me a few weeks ago. The unknown thing to be
known appeared to me as some stretch of earth or hard marl, resisting
penetration. . . the sea advances insensibly in silence, nothing seems to
happen, nothing moves, the water is so far off you hardly hear it. . . yet
it finally surrounds the resistant substance.1

Among Grothendieck’s singular talents, widely admired was (and still is) his knack
for abstraction – his ability to find just the right level of generality from which to
attack a problem, to ‘paint a landscape in which the proof is obvious’, as Pierre
Deligne once put it.2

The past four years of my intellectual life have been dominated by the urge to better
understand just what such abstraction consists in. Initially, the problem posed itself
to me in my first forays into computer science – any half-decent introduction to
programming will make at least a passing mention of abstraction and the essential
role it plays in managing the complexity of programs. Yet for all its ubiquity,
such talk of abstraction tends to be light on detail. Even those texts that make
abstraction a central topic, such as Abelson & Sussman’s classic The Structure and
Interpretation of Computer Programs (SICP)[1], never explicitly define abstraction,
but rather illustrate the concept and its utility by way of multifarious examples. The
way one is meant to become acquainted with this notion is evidently by ostension.

The examples I encountered in SICP and elsewhere impressed upon me the signifi-
cance and power of abstraction as a conceptual tool, yet left me unsatisfied – for
though I came to be acquainted with many instances of abstraction, I could not, in
general, say what it was for one thing to be an abstraction of another, nor could
I say, given a particular problem to be solved, what sort of abstraction would be
the right tool for the job, as it were. I became convinced of the need for a theory of
abstraction capable of answering these questions, if only to quiet my own curiosities.
Such a theory, as I see it, would provide precise answers to both of the following,
related questions:

1. “What is abstraction?”, an answer to which would be a mathematical charac-
terisation of abstraction, general enough to cover most (or at least a significant
portion) of the examples to which the word ‘abstraction’ is commonly applied
in e.g. computer science, yet robust enough to yield novel insights, to suggest
new kinds of abstraction, etc.

1this quote is extracted from in Grothendieck’s manuscript Rècoltes et Semailles.
2Pierre Deligne, Theorie des topos et cohomologie etale des schemas, Tome 3, p. 584
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2. “How are abstractions of the sort identified above useful in solving problems?”,
an answer to which, in turn, would suggest criteria for assessing what sort
of abstraction would be best-suited for solving a given problem, or class of
problems.

My attempts to answer these questions ultimately led me to the object of this report:
developing a type theory capable of proving certain parametricity theorems.

Types, abstraction & parametric polymorphism
From the outset of my study of abstraction, I had some sense that the notions of
abstraction in computer science, mathematics, and logic were closely connected – if
not identical – and that a theory of abstraction, properly developed, should apply
equally to all three domains. Grothendieck’s metaphor of the rising sea is reminiscent
of Abelson & Sussman’s concept of metalinguistic abstraction – solving a problem
by establishing a language in which both the problem and its solution can naturally
be expressed. However, it was only once I learned of the correspondence between
proofs/propositions in (constructive) logic & mathematics, and programs/types in
computer science, respectively (the so-called Curry-Howard correspondence) that
I began to see how these various notions of abstraction might be unified. This
view was crystallised for me by the following remark made by John Reynolds in his
seminal 1983 paper “Types, Abstraction and Parametric Polymorphism”:[2]

Type structure is a syntactic discipline for enforcing levels of abstraction.

Reynolds’ remark is only informal and suggestive, but a particularly fruitful in-
terpretation takes ‘type structure’ to mean the structure of computable functions
that exist between types in a programming language, which, by the Curry-Howard
correspondence, is just the same thing as the structure of proofs in the corresponding
logic. Such a structure is a paradigmatic example of a category, an abstract mathe-
matical structure, and the namesake of category theory. One of my earlier realisations
in the course of undertaking this project was that any category could in fact be
viewed as similarly defining a structure of levels of abstraction, in the Reynoldsian
sense. What remains to be seen, then, is what additional structure a category must
possess in order to enable the particular kinds of abstraction employed in computer
science, mathematics, etc., and how this relates to our ordinary, informal ideas
about abstraction, e.g. that abstraction suppresses irrelevant information, reduces
complexity, etc. This was much of the motivation for Reynolds’ 1983 paper – to
better understand the properties of certain type-systems that make them particularly
well-behaved with respect to abstraction.

In particular, within Reynolds’ object of study, the polymorphic λ-calculus (which
corresponds to Girard’s System F of second-order intuitionistic logic), it is possible,
for any property of types expressible within the system, to form a type which is
optimal (in the sense of being a category-theoretic limit/colimit) with respect to
the structure of types with that property. Types of this form have a computational
interpretation as the types of Church-encodings of abstract data types in λ-calculus,
which can be used to represent all manner of mathematical or computational
structures, e.g. natural numbers, tuples, lists, trees, etc. This relates type structure
to another informal idea about abstraction: that abstraction allows us to form ideal
representations of various patterns and properties.

The study of Church-encodings therefore seems a promising avenue toward a theory
of abstraction. Proving that such encodings have the desired mathematical properties
of the structures they are meant to model can be highly non-trivial, however. Toward
this end, Reynolds introduced the concept of relational parametricity, which has
proved an invaluable tool in the analysis of type systems. Reynolds’ technique
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was adapted by Philip Wadler to prove a wealth of ‘theorems for free’[3] about
programs based solely on their types. Significantly, Wadler was able to show that
the two principles of function extensionality (i.e. two functions are equal if their
outputs are equal for all possible inputs) and parametricity jointly imply an induction
principle for the System F encoding of the natural numbers, and hence that this
encoding satisfies all the axioms of arithmetic[4]. These free theorems thus offer a
promising candidate for the kind of structure we might take to be characteristic of
type-theoretic abstraction.

Such theorems, however, remain stubbornly meta-theoretic. One cannot even
express a principle of induction for natural numbers within System F, since System
F lacks types that can depend on values (so-called dependent types), and the most
straightforward way of extending System F with dependent types – Coquand and
Huet’s Calculus of Constructions – while capable of expressing such a principle,
is incapable of proving it. For this reason in particular, modern type theories
have generally eschewed Church encodings of abstract data types in favour of
the more restricted alternative of inductive datatypes, which explicitly include
induction principles as axioms of the theory, but are restricted to a narrower class of
mathematical structures. Church encodings hold the potential to account for a much
broader class of mathematical/computational abstractions, so it is worth investigating
the possibility of developing a type theory that internalizes the kinds of reasoning
embodied in Reynolds’ and Wadler’s proofs (namely: function extensionality and
relational parametricity). Such a type theory could, as I see it, form a central
component of a more general theory of abstraction, in that it would provide:

1. A theoretical framework for exploring the properties of various computational
and mathematical abstractions by modelling these abstractions as Church
encodings and proving that they obey certain free theorems. This, in turn,
may suggest novel forms of abstraction that may form the objects of further
study.

2. By considering the logical and computational devices involved in proving such
free theorems, a more general characterisation of what structure a category
must possess in order for similar free theorems to hold of its objects. What I
have in mind is roughly analogous to how the concept of a topos generalises
the category of sets as ‘an abstract context in which one can do mathematics’3.
This general characterisation would likely be obtained by considering (suitable
generalisations of) the class of models of the type theory.

3. By way of proof-theoretic analysis of the type theory, a means of studying how
abstractions are of use in logic, computation, and mathematics. E.g. once the
type theory is established, we can sensibly ask whether a proof/program that
makes use of some abstraction is shorter than one that does not use that same
abstraction, and hence whether or not that abstraction reduces the complexity
of the proof/program.

Internalising either of function extensionality or relational parametricity, let alone
both, presents a significant challenge, but recent developments in type theory offer
promising points of attack for these problems. The type theory I have developed
can be seen as a synthesis of two parallel currents in type theory:

• The development of various type theories, which, following Atkey, I call
quantitative type systems, that extend the resource-sensitive behaviour of
Girard’s Linear Logic to allow fine control over the use of resources within the
theory.

3this charactersiation of toposes appears on the nLab page for toposes: https://ncatlab.org/nl
ab/show/topos
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• Voevodsky et al.’s programme of Homotopy Type Theory, and the subsequent
development of Cubical Type Theory.

In developing this theory, my goal has been to ensure that the following key
properties of the theory all hold:

• Normalisation: every computation terminates and yields a term in normal
form.

• Confluence: if there are multiple distinct terms that a given term computes
to, then further computation can be done to reduce these to a common term.

• Subject reduction: validity of proofs/programs is preserved by computation of
their constituent terms.

• Canonicity: every term of a given type in normal form is explicitly built up
from the constructors of that type.

• Decidability of proof/type checking: there is an algorithm, that always termi-
nates, for determining whether a given proof/program is valid.

Taken together, these properties ensure the coherence of the theory both as a
computational system and as a logic. What follows is an outline of my process for
developing this theory, and of my attempts at proving that the above properties
hold of it.

A Theory of Types
Having initially sketched a plan for the design of the theory, and the various
logical/computational devices I expected to use to accomplish my goals, I proceeded
to build the theory up in stages, starting from a basic dependent type theory in
the style of Per Martin-Löf, and working up to the full theory with all the whistles
and bells. This has allowed me to adopt the following strategy for proving that the
theory has all desired properties – in the first stage, I prove that these properties
hold of the basic theory; in subsequent stages, whenever the theory is extended by
some new capability, I show how to adapt the prior proofs of these properties to the
modified theory. At present, most of my proofs are only sketches. Further work will
be required to flesh these out into full proofs, or better yet, to formalise the proofs
in a proof assistant.

First stage – the basic type theory

In the first stage, my research into the design of systems of dependent type theory
led me to adopt a bidirectional typing discipline. The core idea of bidirectional
type-checking is to treat the judgments of type theory not merely as statements, but
as implicitly-defined programs that take some input and yield some output (which
need not be merely true or false). A type theory in bidirectional style thus has
distinct judgments for type-checking (in which both the term to be checked and the
proposed type are given as inputs) and type-synthesis (in which only the term being
checked is provided as input, and – if the term is well-formed – a type for that term
is yielded as output); the interplay between these two judgments forms the motor
that drives the whole operation of bidirectional typing. Hence in a bidirectional
system the usual typing judgment t : T (t is of type T ) is split in twain:

• The judgment T 3 t means that term t can be checked to be of type T .
• The judgment e ∈ R means that type R can be synthesised for term e.

The practical upshot of distinguishing these judgments from one another comes
into play when laying out the rules for validity of judgments: such rules implicitly
define algorithms for type checking and synthesis, and this serves to show that type-
checking for the system thereby defined is at least semi-decidable. More broadly,
the bidirectional discipline has a tendency of making metatheoretic proofs relatively
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straightforward and painless, where they might otherwise be quite involved under
more traditional styles of presentation. An additional virtue of bidirectional style,
at least for the basic theory, is that it keeps the overhead of typing information a
programmer must supply to the typechecker to a minimum.

My main references for learning the principles of bidirectional type systems have
been Conor McBride’s various writings, talks, etc. on the topic,[5],[10] along with
additional writings by Neel Krishnaswami and Jana Dunfield.[6] Upon this foundation,
I laid out a basic type theory in bidirectional style, with dependent function types
(Π-types, corresponding to universal quantification), dependent pair types (Σ-types,
corresponding to existential quantification), and a single universe à la Russell (i.e. a
type whose elements are themselves types), where computation of terms corresponds
to β-reduction.

I chose to make the basic theory predicative, as this enables a very clean proof of
normalisation. However, since Church encodings – my ultimate object of study – rely
on a certain amount of impredicativity, the final system must break the predicativity
of the systems at previous stages and so also the validity of this proof. Nonetheless,
so long as the proof otherwise remains valid right up until the theory becomes
impredicative, this shows that the theory can only fail to be normalising as a result
of this impredicativity. The manner of impredicativity permitted by the full theory
is just the same as that allowed by System F and the Calculus of Constructions
(i.e. impredicative quantification over types), which are themselves normalising, so
we would similarly expect the full theory to be normalising. However, proving as
much requires a significantly stronger mathematical arsenal than that involved in
the proof of normalisation for the predicative theory, due to the massive increase in
proof-theoretic strength resulting from impredicativity.

These considerations out of the way, the proofs of the key properties for the basic
theory are all straightforward.

For the proof of normalisation, I adapted a method outlined by Chris Casinghino
for proving normalisation of the Calculus of Constructions, as a simplification and
unification of proofs by Geuvers, Nederhof, Melliès, and Werner.[7] These proofs
all pertained to the Calculus of Constructions, an impredicative theory, but for
my purposes, I was able to adapt the general method identified by Casinghino
to extend to the dependently-typed setting a standard proof of normalisation for
predicative theories without dependent types – assign a natural number to each type
that measures its complexity, and then show that computation at a given type can
only lead to computations at types of strictly lower complexity. The trick, as in the
cases considered by Casinghino, is not only to define an interpretation of types into
natural numbers, but also of terms, such that a function on types becomes a function
on natural numbers, a pair of types becomes a pair of natural numbers, etc. Once
this complexity measure has been defined, bidirectionalism takes care of the rest:
a natural consequence of the bidirectional style is that every site of computation
in a term is labelled with the type at which that computation is active. A simple
case analysis on the rules for computation shows that the labels in a computed term
(the contractum) are of strictly lower complexity than the label of the term it was
computed from (the redex).

I have not encountered a proof of normalisation for a predicative dependent type
theory elsewhere in the literature that uses this same method of directly assigning
a complexity measure to types, so it may be of some theoretical interest. For my
part, I have found that this method of proof scales nicely to some more advanced
theories; in particular, for some of the type theories developed at later stages, it is
not as yet clear how to extend interpretations of the sort considered by Casinghino,
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but it is entirely straightforward to extend the above method.

For the proof of confluence, I followed McBride’s adaptation to the bidirectional
setting of Takahashi’s method of proving confluence (itself a simplification of the
Tait/Martin-Löf method): define a notion of ‘parallel reduction’ that allows multiple
redexes to be contracted at once, then show that this relation is confluent, and
that its reflexive transitive closure coincides with that of ordinary computation, so
ordinary computation is also confluent. The bidirectional discipline ensures that
there is no overlap between redexes in a term, and there is exactly one way of
reducing each redex. Hence a parallel computation corresponds uniquely to a choice
of which redexes within a term to reduce. Any redex that was not reduced during
one step of computation remains available for reduction at the next step. Hence any
divergent parallel-computations can be unified by applying all reductions in the one
that were not applied in the other, and vice versa.

Proving subject reduction for the basic theory is a simple matter of induction on
derivations, along with some lemmas (e.g. that substitution of terms for free variables
preserves typability) similarly proved by induction on derivations. As is often the
case with proofs by induction, the only artful matter is the choice of induction
hypothesis – everything else is elementary.

To prove canonicity and decidability, I construct a modified form of the type theory – I
remove the rule that allows labelling a term with its type and the rules for performing
computation in types, and instead ensure, using the proof of normalisation, that
all terms and types are pre-computed to normal form. By subject reduction, if
a term typechecks in the original theory, then its normal form typechecks in the
modified theory. Simple inspection of the rules in this modified theory reveals that
the only way to build up a term is using the constructors of its type (canonicity),
and that typechecking a term involves only typechecking its strict subterms, hence
the algorithm for typechecking must terminate (decidability).

Second stage – quantitative type systems

Having developed and proved the key properties of the basic theory, I next set
out to lay the groundwork for internalising parametricity. Reynolds’ concept of
parametricity was based on the observation that type variables in the polymorphic
λ-calculus cannot affect the values of computed terms, but may only be used to
parameterise the types of such terms. The first step to internalising reasoning via
parametricity is therefore to avail ourselves of a type system capable of distinguishing
parametric use of variables from value-relevant use.

My two main references in developing such a theory have been Mishra-Linger,[8] and
McBride.[9] Mishra-Linger directly extends the standard formalism of Pure Type
Systems to include a notion of parametric quantification, and parametric functions.
McBride, on the other hand, develops a more general framework of dependent type
theories that are resource-sensitive in a sense closely connected to Girard’s Linear
Logic. Following Atkey,[10] I refer to a type system of the sort constructed by
McBride as a quantitative type system (QTS).

The essential idea of a QTS is to annotate the usual typing judgments and variable
bindings of a type theory with elements of some algebraic structure, interpreted as
resources or generalised quantities that induce corresponding quantitative modalities
on the use of terms they annotate. The interaction of such modalities with one
another is then determined by the algebraic structure of their representative quantities.
McBride’s key insight was that such a structure of resources ought to include a
resource representing nothing, so that the use of a variable in parameterising a type
costs nothing. That is, if the algebraic structure of resources includes a suitable
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operation of addition that represents the simultaneous availability of resources, then
the unit (i.e. zero) of this operation lets us mark those variables/terms that are
never used in positions that affect the values of terms (i.e. are value-irrelevant) but
that may still appear in the types of terms. Hence variables marked with the zero
resource are parametrically quantified.

McBride proposed the theory of QTSs as a means of extending the resource-sensitive
behaviour of Linear Logic and linear type systems to the dependently typed setting
without sacrificing expressivity, but for my purposes, it offers a promising level
of generality from which to view the problem of developing a type theory with
parametric quantifiers, along the lines of Mishra-Linger. In particular, the theory
of quantitative type systems clarifies many of the choices involved in the design of
such a system that might otherwise seem arbitrary, and many desirable properties
of the system fall out naturally as a result.

However, as noted by Atkey, McBride’s original system suffers from a bug that renders
some desirable meta-theoretic properties false. I have therefore found it necessary to
refine and modify McBride’s system somewhat. In fact, these modifications have the
effect of simplifying the metatheory of QTSs, and unifying the framework with other
attempts at similar goals, e.g. Mishra-Linger’s thesis. These adjustments in place,
the methods previously developed for proving the key properties go off without
a hitch, as they are all nearly unchanged from the analogous proofs for the basic
theory.

It is tempting, given a system with parametric quantification, to think that, since
the input to a parametric function never gets used in a value-relevant way, the
outputs of such a function must all be equal in some suitable sense. In fact, this idea
is key to the method I adopt for internalising parametricity theorems within such a
theory; however, care must be taken in making this notion precise. Mishra-Linger
developed a notion of erasure – such that the erasure of a term is obtained by
erasing all subterms that are only used parametrically – and proposed a modified
conversion rule that allowed the identification of types up to erasure. This allowed
the internalisation of certain metatheorems within the theory of Pure Type Systems
with erasure, e.g. the uniqueness of identity proofs. However, as was later discovered,
this modification has the unfortunate consequence of rendering type checking for the
theory undecidable. Much of my efforts in subsequent stages can be seen as attempts
to overcome this obstacle – to develop a theory where parametric quantification
induces a kind of equality, but where type checking remains decidable.

Third stage – syntactic extensionality: η-expansion

Having developed the framework of QTSs in order to express parametric quantifica-
tion, my next task was to equip the type theory I developed within this framework
with a notion of equality capable of proving both parametricity theorems and exten-
sionality principles for types, as these are both necessary for the internalisation of
proofs such as Wadler’s. My investigations into type-theoretic notions of equality for
this purpose ultimately led me to Cubical Type Theory, which arose out of efforts to
give a computational interpretation to the theory of Homotopy Type Theory (HoTT)
pioneered by Voevodsky et al. As McBride has remarked, it is ‘inspiringly simple’
to prove principles such as function extensionality within Cubical Type Theory.4
Indeed, an initial motivation for Cubical Type Theory, and HoTT more generally,
was precisely the inability of the usual formulation of equality in Martin-Löf-style
type theories to prove such extensionality principles while maintaining decidability
of type checking.

4in a talk at the EUTYPES 2018 conference: https://youtu.be/W5-ulP_JzNc
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However, as a relatively young branch of type theory, Cubical Type Theory has its
share of technical problems that remain to be worked out. A particular snag is that
by default, the extensionality principles provable within Cubical Type Theory only
apply to terms in η-long form. In order to generalise these principles to all terms, the
theory must be equipped with some form of η-conversion. Traditionally, including a
form of either η-reduction or η-expansion in the notion of computation of a type
theory is difficult to get right, and complicates the proofs of most metatheoretic
properties. Extant cubical theories have mainly opted instead to either implement
a separate notion of judgemental equality on top of computation (as in the case
of Chapman, Nordvall Forsberg, and McBride) that implements η-conversion, or
to forego a primitive notion of computation altogether, and to only rely on such
judgmental equality (as in the case of Cohen, Coquand, Huber & Mörtberg). The
downside of this approach is that it is generally more difficult to show that judgmental
equality is decidable than it is to prove decidability of a notion of computation; the
latter follows from normalisation and confluence, while to prove the former, one
usually ends up defining a notion of computation anyway and showing that the
judgmental equality is equivalent to it. For these reasons, I found it necessary to bite
the bullet and work out the technical details of a type theory with a computational
notion of η-conversion, before proceeding to extend this to a cubical theory.

Happily, many of the technical problems posed by the implementation of compu-
tational η-conversion were greatly simplified for me by the bidirectional style I
had adopted in prior stages. A perennial question in type theory asks whether
it is better to compute η-conversion by way of η-reduction or η-expansion. The
bidirectional discipline settles this dispute in favour of η-expansion. The basic
bidirectional theory developed at the first stage allowed a type-checkable term to
be converted into a type-synthable term by annotating the term with its type; this
had the consequence that every β-redex was labelled with its type. If we dualise
this construction, and allow type-synthable terms to be similarly labelled with their
types, the terms labelled in this way are just those to which η-expansion can be
applied. This preserves the invariant that every site of active computation is labelled
with the type at which it is active. As a result, the proofs of normalisation and
confluence developed at the first stage go through without any trouble. The proof
of subject reduction requires a few additional lemmas to cover cases introduced by
η-expansion, but these are all proved by relatively painless inductions on derivations.
The proofs of canonicity and decidability proceed virtually unchanged – the only
difference is that now both of the rules for annotating checkable and synthable terms
with their types are shown to be eliminable from the theory. This is an instance
of the bidirectional discipline’s close connection to Gentzen’s sequent calculus –
the fact that β-reduction allows elimination of the annotation rule for checkable
terms corresponds to cut elimination; that η-expansion allows elimination of the
annotation rule for synthable terms corresponds to identity elimination.

This suffices to show that both the basic type theory developed at the first stage,
and the framework of QTSs developed at the second stage, can be extended with
η-expansion while preserving all the key properties of these theories. However, one
drawback of this approach to η-expansion is that it renders the theory more verbose
than those of prior stages – η-expansion involves labelling terms whose types may be
synthesised with their types, but because these types could already be synthesised,
for the purposes of type checking, such annotations are redundant. This is one
instance in which the duality between checking and synthesis in the bidirectional
style does not quite match the symmetries of sequent calculus, despite being closely
connected to them. At first this was cause for some annoyance on my part, but I
quickly found a way to overcome this nuisance. Since the bidirectional discipline
guarantees that an unlabelled site of η-expansion has enough information present
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within it to derive its type (and therefore a label for it), we can have our cake and eat
it too: we can write programs without labelling sites of η-expansion with their types,
and then translate these into fully labelled programs for the purpose of computation.

Fourth stage – propositional extensionality: Cubical Type Theory

The history of typed programming is the history of the struggle for
equality – Conor McBride5

Considerations of η-conversion out of the way, the final stage of development for the
type theory involved combining the concept of parametric quantification developed
in the framework of QTSs with a form of propositional equality derived from Cubical
Type Theory. My main references for the construction of the theory at this stage,
were Cohen, Coquand, Huber & Mörtberg (CCHM, hereafter)[11] and Chapman,
Nordvall Forsberg & McBride (CNFM, hereafter).[12] In order to better acquaint
myself with the background and motivation for the constructs of Cubical Type
Theory, I made a significant study of Homotopy Type Theory.[13] The notions of
equality found in both Cubical Type Theory and Homotopy Type Theory differ
markedly from more ordinary conceptions of equality in logic, set theory, etc., and
potentially have profound ramifications for logic, computation, and mathematics.

Voevodsky’s key insight was to observe that a proof of the identity of two elements
a and b of type A could be thought of as a path from a to b in the space defined by
A. Under this view, every type has the structure of a space in homotopy theory.
Moreover, since there is a type of identity-proofs a =A b, one can consider paths
between elements of this type, i.e. paths between paths, giving rise to complex higher-
dimensional structures. Reasoning about the equality of terms thereby becomes ‘type
theory in n dimensions’, and takes on a markedly geometric flavour. Cubical Type
Theory attempts to give a computational interpretation to such higher-dimensional
reasoning. The formalisation of equality proofs in Cubical Type Theory is striking
in its simplicity – a proof of the equality of a and b is a function f whose argument
ranges over a special type (or, rather, pre-type) I, called the interval, with two
designated ‘endpoints’ 0 : I and 1 : I, such that f yields a when applied to 0, and b
when applied to 1. The theory must then be so-constructed as to ensure that the
elements of the interval are indistinguishable within the theory, so that any outputs
of such a function must also be so-indistinguishable. This licenses treating such
functions as proofs of equality.

Systems of Cubical Type Theory such as CCHM usually contain additional con-
structs for interpreting other aspects of Homotopy Type Theory, namely Voevodsky’s
Univalence Axiom and Higher Inductive Types. However, Cubical Type Theory’s
formalisation of identity proofs on its own is quite powerful, and merits consid-
eration as an answer to the question of what constitutes a constructive proof of
equality, independent of other aspects of the theory. Notably, most formulations
of the Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic (a
standard formulation of constructive proof, and precursor to the Curry-Howard
correspondence) conspicuously lack a clause for constructive proofs of identity. The
approach to such proofs taken by Cubical Type Theory suggests that we may
augment BHK with the following:

• a proof of a = b is a function whose argument ranges over the interval I, that
yields a when applied to 0, and b when applied to 1, and that never uses its
argument in a way that is relevant to the value returned by the function.

This suggests a strategy for unifying the treatment of equality in Cubical Type Theory
5quote from the following post on McBride’s blog: https://pigworker.wordpress.com/2015/01/

06/observational-type-theory-the-motivation/
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with the notion of parametric quantification developed in the framework of QTSs
previously: since terms marked with the quantity 0 in a QTS are value-irrelevant,
this quantity can be used to mark both parametrically quantified variables, and the
variables introduced by proofs of equality. This allows an alternative treatment
of the interval in the theory I have developed. In most extant systems of Cubical
Type Theory, the interval must be kept separate from other types, and indeed
cannot be treated as a type within the theory, since the manner of quantification
over elements of the interval differs significantly from that for any other type. The
inclusion of a parametric modality of quantification reveals that the interval as used
in proofs of identity is in fact just the image of an appropriately-structured type
under parametric quantification. Rather than taking the parametrically-quantified
interval as primitive, and thereby being forced to treat it separately from other
types, I can instead leverage continuous quantification over such a type to get the
intended behaviour of identity proofs.

As expected, within the system of Cubical Type Theory I have developed, ex-
tensionality principles are provable for all types, as are other desirable properties
e.g. contractibility of singletons.

From here, somewhat surprisingly, only slight additions to the theory are needed
in order to make parametricity theorems internally derivable. The main sources
I consulted in studying the internalisation of parametricity in type theory were
Bernardy, Moulin & Coquand (BCM),[14] and Harper & Cavallo (H&C);[15] however,
the approach I have ultimately taken toward such internalisation diverges significantly
from that of either set of authors, and to my knowledge is largely original. I make
use of the fact that, within the theory I have developed, both parametric and value-
relevant quantification over the interval are possible. This allows me to introduce a
new construction on types: given types S, T and a type expression R with variables
x (of type S) and y (of type T ) free (which is to say, R is a relation on S and T ),
and elements i, j of the interval, one may form the type (x : S)×i

j (y : T ).R, which
I call a graph type. If i = 1 and j = 0, a graph type of this form reduces to the
type S, while if i = 0 and j = 1, then the graph type reduces to T . If both i = 1
and j = 1, then the graph type reduces to the type of dependent triples (s, t, r)
such that r is a proof of R with s substituted for x and t substituted for y (i.e. the
graph of R). The terms i, j are then (clearly) relevant to the value of such a graph
type. However, whenever a type of this form gets used in a parametric position, i
and j also become parametric. This yields a very direct method for showing that
parametric quantification preserves relations on types, and so in this sense captures
Reynolds’ idea of relational parametricity. Because this approach to internalising
parametricity differs so markedly from those of BCM and H&C, I am not at all sure
what the relationship is between these approaches (e.g. whether or not they are
equivalent). Nonetheless, as detailed in the next section, this augmentation of the
theory yields all the expected parametricity theorems, at least for the cases I have
so far investigated.

As to proofs of the key properties, with some care these can all still be extended
to the system of cubical type theory I have developed. This is particularly the case
because the system I have developed does not yet include constructs for interpreting
the univalence axiom. Further work will be necessary to determine whether it is
possible to extend the type theory I have developed to a univalent system while
preserving the key properties. Setting this problem aside for future research, I
turned my attention to the task of showing that the desired parametricity theorems
are all provable within the theory so-far developed.
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Theorems for free!
I now present a catalogue of the various free theorems I was able to derive within
the type theory built up over the previous stages. In order to prove most of these
theorems, it was necessary to work within the impredicative form of the theory, due
to the reliance on Church encodings:

• As anticipated, since function extensionality and parametricity principles for
the relevant types are derivable within the theory, I was able to internally
recreate Wadler’s proof of induction for the type of Church numerals.

• As a generalisation of the above, I was able to show that the expected induc-
tion principles are provable for the Church-encodings of all strictly-positive
inductive types within the theory.

• As a further generalisation, I was able to show that inductive-inductive types
admit a representation in terms of Church encodings, for which induction
principles are again provable.

• I was able to model some higher-inductive types (e.g. the circle, the torus)
via Church-encodings, and prove that these encodings satisfy the expected
induction and path induction principles. Unlike in the case of strictly positive
inductive types, there is as yet no precise characterisation of what higher-
inductive types are in general, so there is no immediate way of showing that
all higher inductive types are so-representable within the theory.

These results serve to confirm the hypothesis that initially motivated this project:
that a system combining parametric quantification with cubical path types would be
capable of internally proving parametricity and hence also induction principles for
Church-encodings of mathematical structures, and therefore could provide a valuable
test-bed for experimenting with the type-theoretic treatment of such structures. On
this basis, I consider the project to be a resounding success.

Récoltes et semailles
The work I undertook for this project proved to be incredibly edifying. I found a
visceral satisfaction in seeing pieces I had arranged at the earlier stages of development
come beautifully together later on. External circumstances rendered life difficult
for me during the period of my research, and I was beset by personal problems
and poor health, both mental and physical; in spite of all this, I am quite proud of
what I have managed to achieve with this project, and very much hope to be able
to do similar work in the future. The good news, in this regard, is that so much
work remains to be done! At present, outside of this report, most of my writings on
the topics mentioned herein are scattered throughout various notes. Further work
will be required to collate and flesh out the proofs and ideas I have sketched into a
comprehensive and formal presentation.

Beyond collecting and refining the results I have established so far, there are
many open problems pertaining to the theory I have developed, its semantics, its
applications, etc., some of which I have noted as they have arisen in prior sections of
this report; investigations into these questions will likely lead to further refinements
of and modifications to the theory as a whole. Additionally, the research I have
done in service of this project has broadened my horizons to new questions, and –
potentially – other projects. Suffice it to say that these and related problems form
prime candidates for the subjects of future projects, dissertations and/or theses I
will undertake as part of my academic career.

Prior to undertaking this project, I had an interest in becoming at least conversant in
higher mathematical subjects such as category theory, algebraic topology, homotopy
theory, and – of course – homotopy type theory. Among the greatest impacts this
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project had upon me, the research I conducted into these and related subjects over the
Summer transformed this interest of mine into a fascination and deep desire to learn
more. I have come to the conclusion that, in the past several decades, there has been
something of a silent revolution in both logic and computation, spurred by increasing
awareness of connections between the two, and that this revolution has been made
possible, at least in part, by advances in the above mathematical disciplines. In
my opinion, these connections between logic, computation, and mathematics yield
profound conceptual tools, new forms of understanding, and novel approaches to
problem-solving, all of which I seek to better understand, and, hopefully, contribute
to. Indeed, I could see myself becoming something of an evangelist for what I take
to be the new forms of reasoning fostered by the awareness of such connections.
In order to gain a more complete mastery of these connections myself, I am now
determined to have a better mastery of higher mathematics. Because my degree
is technically in subjects outside of mathematics, my options for studying such
mathematical subjects in a formal capacity are currently somewhat limited. In the
coming months/year, I will be considering and discussing what options I have with
my tutors, in order to determine the best way to proceed with a study of such higher
mathematics, whether by way of independent study, or perhaps by enrolling in a
graduate program with a mathematics component.

Ultimately, I see the investigations I have undertaken in this project as a stepping-
stone along the path to a more general theory of abstraction. Ideally, such a theory
would provide a standard by which to assess the means of abstraction afforded
by various programming languages, mathematical theories, and logical systems,
and also to guide the design of new such systems. In particular, it is my hope
that the type theory I have developed toward this end (or something like it) could
serve as the kernel of a system that is at once programming language and proof
assistant/automated theorem prover (in a similar manner to how the Calculus of
Inductive Constructions forms the kernel of the Coq proof assistant, and Martin–Löf’s
Intuitionistic Type Theory forms the basis of the Agda programming language, etc.)

In order to be able to conduct more investigations along these lines, an academic
research career seems appropriate for me, and so I intend to pursue a PhD. However,
I remain open to other options that would similarly allow me to undertake such
research. For instance, if I am able to develop a programming language/proof
assistant on the basis of these logical investigations that becomes widely used enough
that some organisation (whose ethics I can tolerate) is willing to sponsor me in the
development of this language, then I could see that also being a viable career path
that would hopefully permit me the time to conduct my own research, etc. Needless
to say, this project has provided me with experience that will be incredibly valuable,
whatever my path ends up being. I am extraordinarily grateful and honoured for
having received the college’s support in this project. Additionally, I am grateful
to my Merton tutors, Luke Ong and Simon Saunders, for having supported my
application and provided feedback on my project proposal, as well as resources to
explore in the course of my project.

What I have managed to show within the theory I have so-far developed has
convinced me, and I hope will be convincing to others, that the task of developing
a theory of abstraction is a worthy one, and while perhaps too broad to ever be
fully accomplished, may nonetheless bear worthwhile fruit. The problem of finding
the appropriate level of generality from which to view generality itself may appear
impenetrable, like some great mass of land that looms far above the waters of our
understanding; yet the sea rises on.

C.B. Aberlé, Oxford, 24 September 2020
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